2020年新版FRM备考资料下载
  • 考纲对比
  • 学习计划
  • 思维导图
  • 复习资料
  • 历年真题
  • 词典及公式

FRM考试统计模拟方法:蒙特·卡罗方法解题过程!

在FRM考试统计模拟方法中,蒙特·卡罗方法就是一个重要的知识点,那么,蒙特·卡罗方法解题过程有哪些呢,一起随小编看看吧!

蒙特·卡罗方法解题过程主要有三个步骤:

(1)构造或描述概率过程

对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过 程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。

(2)实现从已知概率分布抽样

构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。*简单、*基本、*重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。【资料下载】点击下载FRM一级学习计划

随机数就是具有这种均匀分布的随机变量,随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列,产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。

FRM二级题库>>>点击领取:FRM各科必背定义+历年真题中文解析+学习备考资料(PDF版)

另一种方法是用数学递推公式产生,这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。

(3)建立各种估计量

一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。

预祝广大考生顺利通过FRM考试,如果还有学习上的问题,可以选择融跃FRM网课